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GREEN'S FUNCTION OF THE STATIONARY DYNAMIC PROBLEM FOR A 
VISCOELASTIC HALF-SPACE" 

D.R. ATADZHANOV, A.G. SARKISYAN and A.I. TSEITLIN 

Xl~ X 2. 
will describe it using the model of relative, frequency-independent damping /3/. 
modulus is taken in the form 

E (0)) = E 1 ] 0) I ~ (cos */z n a  ~- t s ign 0) s in 1/2~a ) 

E1 = I E ( I )  I, a = 2 ~  - l a r c t g  

A stationary Green's function is constructed for a viscoelastic 
half-plane in the form of a Fourier integral, and asymptotic estimates 
obtained for the integrand are used to carry out a numerical realization 
efficiently. 

Green's function was constructed for an elastic half-plane in /i/, 
but was complicated and difficult to calculate. A simpler expression 
was given for this function in /2/ with reference to a source which was 
not easily accessible. A solution of the problem of the steady-state 
oscillations of a homogeneous, isotropic viscoelastic half-plane, caused 
by the action of an arbitrarily oriented concentrated force varying 
harmonically with time, is given below. The solution is used as the 
basic for constructing the BEMDYST boundary-element program. 

| .  We shall consider the half-plane P (--oo<x,<oo, x~0) in Cartesian coordinates 
We will assume that the material of the medium possesses internal friction, and we 

The complex 

(l.O 

and Poisson's ratio ~ is assumed to be a real constant, i.e. it is assumed to be non- 
relaxing. Here ~ is the loss factor. The model ensures that energy losses on the whole 
frequency axis are frequency independent, and enables us to study any dynamic processes. It 
cannot however deal with a static load caused by unlimited creep when 0) = 0. 

Let a concentrated unit force varying harmonically with time be applied to the point 
a (al, a2). Eliminating the time coordinate, we reduce the problem to that of determining the 
complex Green's matrix function g (x; a I ~) = [g~j(x; a I ~)]2x~, satisfying the Lame equation and 
boundary conditions 

A (0~; z0)) g ( x ;  a I 0))-{- p ~ 2 g ( x ;  a I 0 ) ) -~  6 (x, a) I = 0 

h m  T (Ox, n (x0); i0)) g (x; a I 0)) = 0 

Here gkJ (x; a I 0)) is the displacement at the point x (xl, x2) along the z~ axis caused 
by unit force acting in the direction x) at the point a (a,, a2); A (ax; i0)) = [A~, (a~; ~0))]2x2, 
T (ax, n (z0); i0)) = [T~] (@~, n (z0); /0))]2×2 are the complex differential matrix operators 

obtained, respectively, from the static matrix Lame operator and stress operator of the 
classical theory of elasticity, where the elastic constants have been replaced by the corre- 
sponding complex moduli of viscoelasticity 

TI¢~ (Ox, n (x); to,)) = ~,n~ (x) O/Oxj + p~n~ (x) O/Ox~: + p.fk~O/On (x) 
X = v E ( o ) / ( ( i - S v ) ( l - - 2 v ) ) ,  ~ = E ( o ) ) / ( 2 ( i - b v ) )  

6kj is the Kronecker delta, 6 (x, a) = 6 (x,--a,)~ (x,--a,) is the Dirac delta function, I is 
the unit matrix, @ is the density of the material of the half-plane, ~, M are complex 
parameters representing the analogues of the corresponding Lame constants, E (~) is obtained 
from (i.i), F is the boundary of the half-plane, n (x0) = {0, |} is the vector of inner normal 
to the boundary F, A is the Laplace operator. 

We can write /4/ the regular solution of the problem in question, taking into account 
the decay of the oscillations at infinity, in the form 
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c (x*) g (x*; a [to) = G (x*; a ] to) + I Gq (xo; x* [ o)) g (xo; a I to) dx, 
¢(x*)  = {i  f o r  x* ~ ( P \ , F ) ;  ~/2 f o r  x* ~ F} 

G¢ (Xo; x* I to) = [T (0=, n (Xo); ito) G (x; x*) I ~o)1 T I~,=o 

where G (x*; X [ to) 
henceforth the integration in xx, x** and ~2 will be carried out from --co 
virtue of the relation 

Gp (Xo*; x o I to) -~- [T (Ox*, n (Xo); tto) G (x*; x o I~)] T ]~,*=o = - -  Gq (Xo; Xo* l to) 

the solution (1.2) for x*~ F can be written more conveniently in the form 

is the stationary Green's function for the viscoelastic plane. Here and 
to -{-co.  By 

*/,g (Zo*; a [to) = G (Xo*; a I to) - -  I Gp (xo*; z o I(o) g (Xo; a I t  °)  dx, 

(~ .2)  

( i .3)  

(1.~) 

and the integral is understood to represent its principal value. 
Let us apply to both sides of Eq.(l.4) the Fourier transform in 

*/2gF (~, 0; a l to) = G~ (~ ,  0; a I t  o)  - 

II Gp (xt*, O; x o Ito) g (Xo; a I to) exp (i~xx~*) dXl* dxt 

xx* /5/ 

(1 .5 )  

where the subscript F denote the Fourier transform. Since G v (x0*; x o ] to) is a function of 
the difference x0*--x0, it follows that the double integral in (1.5) can be written in the 
form 

G;,, ( 6  I to) &, (~,, 0; a I to) 

G~r (~, I t  ° )  = I G~ (R l to) exp (i~,R) dR (R = xt* - -  ~1) 

Taking all this into account, we reduce relation (1.5) to the form 

[1/2/-}- G~F (~1 [ to)] gF (~I, 0; a ] to) = GF (~1, 0; a I (o) (1.6). 

and this yields 

gF (~1~' 0; a ] to) = [C] -1 G F (~1, 0; a ] to), C ---- ' / , I  + G~v (~, [ to) ( t .7)  

The use in (1.7) of the stationary Green's function G for the viscoelastic plane and the 
s~ress tensor G~ generated by it, leads to very bulky and time-consuming calculations. This 
can be overcome as follows. We have 

GF (~1, 0; a I to) = (2~) -11 GFFI~i, ~2; a [to) exp (-- i~x~*) d~2 ]x,*=o (I .8) 

G~F (~t, x2* I to) = (2~)-* exp ( - -  i~lxa) I G~FF (~1, ~2; Xo I to) exp ( - -  i~2x2" ) d~2 (t .9) 

where GF~ G~FF are double Fourier transform of G and G~. Applying in the Lame equations the 
double Fourier transformation in x*, we find 

GFw, (~,. 6: x lto) °xP [' (~x,+~,~,)]~_~ ~ (  ~,~L + 6"'~"~ _--k,~'~' /1 O. 10) 

k~ 2 = P t o ~ / ( ; ~ , + 2 ~ ) ,  k 2 : p t o 2 / ~ ,  ~ 2 : ~ 2 + ~ 2 2  

In order to determine 
ation in x* to the relation 

Gp (~; Xo [ to) = IT (a~.,. (x*); ~o,) G (~*; Xo I tow 

and integrate by parts on the right-hand side 

GpFFJ~ (~I, ~2; X01 CO) = - -  inl  (X*) (~8,k~m + ~k~im + ~t~lSkm ) GFFmJ (~I, ~,; X0 [to) 

S u b s t i t u t i n g  ( 1 . 1 1 )  i n t o  ( 1 . 9 )  a n d  t a k i n g  i n t o  a c c o u n t  ( 1 . 1 0 ) ,  i n t e g r a t i n g  / 6 /  

~821 ¢ ((~ - -  62.~2) 12 t- 82~13) -}- ~kt282~ ((~: --  82~)  lot + 82Jlt)  + 

82,,82a/3) -5 pkt 2 (~2., ( ~  - -  tS2~:~2) lot + 82~2;:[lt + ~r~llt ) 

Gp~y (~I, ~2; x0 [ to) , we can also apply the double Fourier transform- 

(1.11) 

(1.t2) 
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where 

I .  = I ,  t - -  I~,,, l ~  = (--  0nztB~-~exp( T M  Bsx2*) 
/ i ' ~ = s i g n ( o ] / ' ~ S - - k S ,  n = 0 . 1 , 2 , 3 ,  s = l , t  

and passing to the limit as (P ~ F) ~ x* -~ x0* ~ r (written otherwise as x~* -~ +0), we 
obtain 

2~P~sG~F~ (h, + 0]~) = (X + 2~) %k (b -- 6~s)(R, -- Rt) + 

X~is62~ (~ -- 6s,~2) ( R? -- R; ~) + ~kt~62~ (~ -- ~s,~2) I{~ ~ + 
21x6s (~ - -  6srgs ) ( B t  - -  TIt) + ~kt  s (6s,  (g~ - -  62r~s ) H I  1 - -  i6k,  ) 

Taking into account the relations between the boundary and straight (singular) values of 
the generalized double layer potential /4/ 

G~F ~ (~1 I ~) = %1 + G~/ (~, +0 I ~) 

we find, after the transformation, 

GpF~ (~1 ] 0)) = 1/2 (6Sk (~, - -  623~2) ~1~[1 - -  ~S3 (~k - -  62k~s) ~71)  (~ (~1) 

(~,) = ~k, -s (2 (R, -- R,) R, + k, 2) 

Further, according to the second equation of (1.7), 

i I - 
C = /2 _ hR~ (h) ~Rti~ (h) 

Now, using the first relation of (1.7) (taking into account (1.8) and (i.I0)) and (1.12) 
(taking into account (1.3)), we finally obtain Green's matrix 

g(x*,alo) )=G(x*,a](o)-~t  i I3(~l, x2*;a,l~o)× (i  13) 
--oo 

e x p [ - - ~ i ( x i * - - a a ) ] d ~ t  ( x * , a ~ P )  
I / . . . . . . B H  

B n :  .%_ (~,)~':P,kt,tl, (N+(~I)[~exp[--Rt(x:*  + a 2 )  ] + 

+ exp [ - -  R, (x2* + a,)l)  - -  2 (2•12 -- k, ~) R~R, (exp [ - -  (Rtx.* + R,a2)l + 

exp [ - -  (Rlx~* + Rtas)]) ) 

B, 2 = .~- (¢,)'h~k,' (+ N+ (~I) (exp [-- Bt (xs* + a2) ] + exp [-- R t (xs* + as)]) -- 

2 (2~1 s - -  kt 2) TItTIt exp [ - -  (Rtx2* + Rtas) ] - -  

2~12 (2~12 - -  kt s) exp [ - -  (Tltx2* +//ias)]) 
N± (~I) = (2.~12 -- kts) s +-- 4~t'Rtll, 

The quantity B2s is obtained from B n be replacing R t by R t and R t by Rt, and the 
quantity Bst is obtained from B,~ using the same substitution and change of sign, and 
N_(~I) is a Rayleigh function. 

To simplify the notation, we shall henceforth omit the asterisks. The accuracy of the 
solution obtained matches, for a s = 0 and elastic constants, that of the solution of Lamb's 
problem /7/ for an elastic half-plane. Comparison with Green's function given in /2/ and 
mentioned at the beginning of this paper, revealed an error in the latter. 

2. The problems encountered in calculating the term appearing in (i.13) outside the 
integral sign, i.e. of Green's function for a viscoelastic plane, were discussed earlier by 
Sarkisyan* (*Sarkisyan A.G., Use of the method of boundary elements in solving plane, station" 
ary dynamic problems of viscoelasticity. Candidate Dissertation, Moscow, 1986.). We shall 
now discuss methods of evaluating the integral term, i.e. the Fourier transformation for the 
elements of the matrix B (~i, x2; a2 I ~). The latter are even functions of ~i when ] = k, and 
odd function of ~, when ]~k. 

Taking these relations into account, we shall write the integral term in (1.13) in the 
form 
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n-*,3,~le (0, o~) - -  i~  -1 ( i  - -  ,5~) I ,  (0, ~ )  
q 

'o (~' q) = I B,, (~,, x,;  a, I co) cos [~, (~, - a, ) l  d~, 
is 
q 

Is (p, q) = I B~  ([~, xa; a a I o)) sin [[1 (x* - -  a,)] d ~  
P 

We shall also separate the integration intervals in le (0, co) and I, (0, co) into finite 
and semi-infinite intervals with the points ~I = b and ~I = d, respectively. 

Since cos [~, (x, -- a,)] and sin [~, (x, -- a,)] oscillate rapidly for large values of 
x,- a I , it follows that in order to obtain the value of the integral with the necessary 
accuracy, we must take in the corresponding quadrature formula the polynomials of degree 
n > n,, where Z is the length of the interval of integration and n. ----- (x, -- al) I/~ n u | is 
the number of zeros in the integrand. This obviously requires very bulky computations. A 
quadrature formula useful for a wide range of variation in the frequency of the oscillating 
function was given in /8/. According to this formula we obtain, for the integrals over the 
finite intervals, 

n,--1 

i e ( O , b ) ~ i  ~ l  Bj.  ( ! ,~n,x , ;a2](o)co s t ,n+l .~ 

7n=o, 
ns--1 

[ t . ..tm+l 
1,  (0, d)  = ] Z B k (!1", z2; a ,  I¢o)sin [.--~- i x ,  - -  a , ) t ~ ,  + ~,')] 

I = [1/~ (z~ - -  a~) ah]  -1 sin [112 ( z l  - -  al)  A~l] A~I 

~1 ° = 0,  ! ~  = A~I . . . . .  ~x'~ = nxA! 1 = b ( ~ : .  = n25~., = d); 5 !x  = ~ ÷ ~  - -  ¢~'~ 

Next we shall evaluate the integrals over semi-infinite intervals. After simple but 
lengthy reduction we obtain the following asymptotic relations as ~,-~co, for the elements 
of the matrix B (~1, z,; a, I ~) : 

Bjk (~,, x,; a, [ ~) ~ --DjkN-*~,-* exp [--~, (x, + a,)] 

D** = D , ,  = [4 (t - -  v) '  + (t - -  2v)']/[8 (t - -  v)I 
Dis = --D,, ---- --i (*I, -- v) 

(2.i) 
(2.2) 
(2.3) 

Taking into account (2.1) and (2.2), we obtain the estimate 

I Be (le (b, o~)) I 

I - -  Re (1~ -*) D n S ~11 exp [ - -  ~1 (xz + a2)] c o s  [~1  ( X l  - -  a,)] d~, [ 
b 

Re (N -l) D n ~ exp [ - -  ~1 (x2 + a~)] d~l = 
b 

B e ( N - 1 ) D n ( x 2 + a ~ ) - * e x p [ - - b ( x  2 + a ~ ) ]  (b>~-l)  

Using analogous reasoning we obtain, by virtue of (2.1) and (2.3) , I Be (/8 (d, co)) I ~ I Re 
(~N-*) I (1/, _ v)  ( z ,  + ai)  -1 e x p  [ - - d  (x ,  + a, ) ]  (d > ~  t )  

When x, = a2 = 0, we obtain the estimates for the integrals in question, taking into 
account the asymptotic behaviour of the integral cosine and integral sine /9/, as follows: 

Be (Io (b, co))  ~ Re  (N -1) Dxl  [b (xl  - -  al)]  -1 s in  [b (zx - -  al)]  
Be (I, (d, co)) ~ :h Be (il~ -x) (1 /2  - -  V) [d (X 1 - -  al)] -I COS [d (x, - -  a,)] 

(b >~> i l l  x 1 - -  a,  l, d ~  t I I x  1 - -  a 1 l, x l  - -  al  =/= O) 

The upper sign corresponds to the integral with integrand Blg, and the lower sign to 
the integral with Bsl. 

We obtain analogous estimates for Im (]¢ (b, co)) and Im (I s (d, co)) by replacing, respect- 
ively, Be (N -I) by Im (N -I) and Re (iN -I) by Im (iN-l). 

The solution obtained is most effective for the far field, i.e. when the displacements 
are determined far from the point of application of the concentrated harmonic force. The 
computing time increases substantially when the force is situated near the origin of coordin- 
ates and the displacements are determined in the same region. 

The figure shows the results of solving (1.13) numerically on a computer, at x~ = 0 (at 
the boundary of the half-plane), with the source situated at a depth of a2 = 30 m, at an 
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angular frequency ~ =62.28 radians/sec, a modulus of elasticity El = 2.2 GPa, a denslty 
p ~ 2.2 tons/m ~, a loss factor y =0.2 and a Poisson's ratio ~ =0.15. The numbers on the 
curves correspond to the indices ],k 

Ig~llo-~,M 

03 

02 

01 

~22 "Zl ,M 

V 
20 O0 60 x 7 ~ M 

Fig.l 
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